TRANSVERSE VIBRATIONS OF A SIMPLY SUPPORTED RECTANGULAR ORTHOTROPIC PLATE WITH A CIRCULAR PERFORATION WITH A FREE EDGE

P. A. A. Laura and R. E. Rossi
Institute of Applied Mechanics (CONICET), Department of Engineering, Universidad Nacional del Sur, 8000-Bahí a Blanca, Argentina
AND
D. R. Avalos and H. A. Larrondo
Physics Department-School of Engineering, Universidad Nacional de Mar del Plata, 7600-Mar del Plata, Argentina

(Received 19 November 1997)

1. INTRODUCTION

The structural designer is frequently confronted with the need to provide convenient passage for utility ducts through openings in slabs and beams. The situation leads to a more complicated response from a structural dynamics viewpoint.
A very thorough study has been performed by Abdalla and Kennedy in the case of pre-stressed concrete beams [1]. The determination of the fundamental frequency of transverse vibration of simply supported isotropic and orthotropic rectangular plates with rectangular holes has been tackled by the authors using analytical and numerical techniques [2-3].
The present study deals with the determination of the lower natural frequencies of transverse vibration of simply supported orthotropic plates with circular openings (Figure 1) using two independent techniques.
(1) An analytical approach whereby the displacement amplitude is expressed in terms of a truncated double Fourier series which is the exact solution of the vibrating, solid rectangular plate simply supported at its four edges. The frequency determinant is generated using the Rayleigh-Ritz method.
(2) The finite element method, using a standard code [4].

Figure 1. Simply supported orthotropic rectangular plate with a circular cutout.

2. ANALYTICAL SOLUTION

Following previous studies [2,3] and using Lekhnitskii's well established notation [5] one expresses the governing functional in the form

$$
\begin{align*}
J[W]= & \frac{1}{2} \iint\left[D_{1}\left(\frac{\partial^{2} W}{\partial x^{2}}\right)^{2}+2 D_{1} v_{2} \frac{\partial^{2} W}{\partial x^{2}} \frac{\partial^{2} W}{\partial y^{2}}+D_{2}\left(\frac{\partial^{2} W}{\partial y^{2}}\right)^{2}\right. \\
& \left.+4 D_{k}\left(\frac{\partial^{2} W}{\partial x \partial y}\right)^{2}\right] \mathrm{d} x \mathrm{~d} y-\frac{\rho \omega^{2}}{2} \iint h W^{2} \mathrm{~d} x \mathrm{~d} y \tag{1}
\end{align*}
$$

The displacement amplitude is now approximated using the truncated expression

$$
\begin{equation*}
W(x, y) \simeq W_{\alpha}(x, y)=\sum_{n=1}^{N} \sum_{m=1}^{M} A_{n m} \sin (n \pi x / a) \sin (m \pi y / b) \tag{2}
\end{equation*}
$$

where each co-ordinate function $\sin (n \pi y / a) \sin (m \pi y / b)$ constitutes the exact eigenfunction when the orthotropic, simply supported, rectangular plate is simply connected and, clearly, does not satisfy the governing, natural boundary conditions at the cutout. However, the procedure is a legitimate one when employing the Rayleigh-Ritz method.

Table 1
Frequency coefficients $\Omega_{i}(i=1,2,3, \ldots, 5)$ determined in the case of a simply supported rectangular orthotropic plate $\left(D_{2} / D_{1}=D_{k} / D_{1}=0 \cdot 5 ; v_{2}=0 \cdot 3\right)$ with a circular hole with a free edge $(b / a=2 / 3)$

r / a	\bar{x} / a	\bar{y} / b	Method	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}	Ω_{5}
$0 \cdot 10$			Analytical and F.E.	$30 \cdot 23$	63.92	79.52	$115 \cdot 19$	$120 \cdot 95$
	1/4	1/4	F.E. 400 terms	$\begin{aligned} & 29.75 \\ & 28.95 \end{aligned}$	$\begin{aligned} & 64 \cdot 17 \\ & 63 \cdot 91 \end{aligned}$	$\begin{aligned} & 79 \cdot 37 \\ & 73 \cdot 38 \end{aligned}$	$\begin{aligned} & 112 \cdot 89 \\ & 104 \cdot 42 \end{aligned}$	127.53
	1/4	1/2	F.E. 400 terms 900 terms	$\begin{aligned} & 30 \cdot 27 \\ & 30 \cdot 45 \\ & 30 \cdot 23 \end{aligned}$	$\begin{aligned} & 65 \cdot 72 \\ & 65 \cdot 58 \\ & 65 \cdot 53 \end{aligned}$	$\begin{aligned} & 77 \cdot 40 \\ & 78 \cdot 06 \\ & 77 \cdot 13 \end{aligned}$	$\begin{aligned} & 113.91 \\ & 117.01 \\ & 114.05 \end{aligned}$	118.65
$0 \cdot 15$	1/2	1/2	F.E. 400 terms 900 terms	$\begin{aligned} & 30.76 \\ & 30.66 \\ & 30.76 \end{aligned}$	$\begin{aligned} & 62 \cdot 32 \\ & 64 \cdot 12 \\ & 61 \cdot 70 \end{aligned}$	$\begin{aligned} & 77.53 \\ & 78.66 \\ & 77.89 \end{aligned}$	$\begin{aligned} & 115 \cdot 54 \\ & 115 \cdot 84 \\ & 115 \cdot 61 \end{aligned}$	118.05
	1/4	1/4	F.E. 400 terms	$\begin{aligned} & 29 \cdot 22 \\ & 28 \cdot 99 \end{aligned}$	$\begin{aligned} & 64 \cdot 51 \\ & 64 \cdot 29 \end{aligned}$	$\begin{aligned} & 79 \cdot 21 \\ & 78 \cdot 50 \end{aligned}$	$\begin{aligned} & 110 \cdot 83 \\ & 110 \cdot 45 \end{aligned}$	$138 \cdot 15$
	1/4	1/2	F.E. 400 terms	$\begin{aligned} & 30 \cdot 48 \\ & 30 \cdot 31 \end{aligned}$	$\begin{aligned} & 70 \cdot 98 \\ & 71 \cdot 24 \end{aligned}$	$\begin{aligned} & 75 \cdot 70 \\ & 74 \cdot 60 \end{aligned}$	$\begin{aligned} & 114 \cdot 52 \\ & 113.35 \end{aligned}$	119.09
$0 \cdot 20$	1/2	1/2	F.E. 400 terms	$\begin{aligned} & 32 \cdot 85 \\ & 33 \cdot 07 \end{aligned}$	$\begin{aligned} & 59.04 \\ & 57.55 \end{aligned}$	$\begin{aligned} & 75 \cdot 37 \\ & 74 \cdot 24 \end{aligned}$	$\begin{aligned} & 111 \cdot 94 \\ & 111 \cdot 11 \end{aligned}$	$123 \cdot 59$
	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 2 \end{aligned}$	F.E. 400 terms	$\begin{aligned} & -\overline{3} \cdot 64 \\ & 30 \cdot 26 \end{aligned}$	$\begin{aligned} & -\overline{74 \cdot 88} \\ & 70 \cdot 40 \end{aligned}$	$\begin{aligned} & \overline{-} \overline{30 \cdot 30} \\ & 81 \cdot 18 \end{aligned}$	$\begin{aligned} & 123.41 \\ & 117.90 \end{aligned}$	$12 \overline{6} \cdot 48$
	1/2	1/2	F.E. 400 terms	$\begin{aligned} & 37.07 \\ & 36 \cdot 73 \end{aligned}$	$\begin{aligned} & 56.63 \\ & 54.63 \end{aligned}$	$\begin{aligned} & 77 \cdot 16 \\ & 74 \cdot 62 \end{aligned}$	$\begin{aligned} & 109 \cdot 16 \\ & 108 \cdot 27 \end{aligned}$	$130 \cdot 35$

Obviously, the energy functional is integrated over the physical doubly connected domain in expression (1).

Substituting the approximating function in equation (1) and minimizing $J(W)$ with respect to the $A_{n m}$'s results in an homogeneous, linear system of equations in the $A_{n m}$'s. The non-triviality condition yields a secular determinant the roots of which constitute the frequency coefficients $\Omega_{i}=\sqrt{\rho h / D_{1}} \omega_{i} a^{2}$.

3. NUMERICAL RESULTS

The first five frequency coefficients $\Omega_{i}=\sqrt{\rho h / D_{1}} \omega_{i} a^{2}$ have been determined for a simply supported orthotropic plate with a circular perforation for $D_{2} / D_{1}=D_{k} / D_{1}=0.5$ and $v_{2}=0 \cdot 3$, for different sizes and positions of the circular hole.

Values of Ω_{i} for $b / a=2 / 3,1$ and $3 / 2$, are depicted in Tables 1,2 and 3, respectively. The value of Ω_{5} was only determined by means of the finite element method, since the analytical approach did not converge properly for the fifth eigenvalue.

For $b / a=2 / 3$, a net of 67×100 elements was used for the solid case; for $b / a=1$, 100×100 elements, and for $b / a=3 / 2,120 \times 80$ elements. The number of degrees of freedom varied as a function of the type of configuration; for instance, for $a / b=1$, $r / a=0 \cdot 1,28920$ degrees of freedom were used independently for the location of the hole. The discretization of the plate in the vicinity of the orifice is depicted in Figure 2.

Table 2
Frequency coefficients $\Omega_{i}(i=1,2,3, \ldots, 5)$ determined in the case of a simply supported rectangular orthotropic plate $\left(D_{2} / D_{1}=D_{k} / D_{1}=0 \cdot 5 ; v_{2}=0 \cdot 3\right)$ with a circular hole with a free edge $(b / a=1)$

r / a	\bar{x} / a	\bar{y} / b	Method	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}	Ω_{5}
$0 \cdot 10$			Analytical and F.E.	19.98	43.47	$51 \cdot 19$	79.52	79.95
	1/4	$1 / 4$	F.E. 400 terms	$\begin{aligned} & 19 \cdot 75 \\ & 19 \cdot 69 \end{aligned}$	$\begin{aligned} & 43 \cdot 46 \\ & 43 \cdot 31 \end{aligned}$	$\begin{aligned} & 51 \cdot 08 \\ & 50 \cdot 85 \end{aligned}$	$\begin{aligned} & 78 \cdot 47 \\ & 78 \cdot 4 \end{aligned}$	82.46
	1/4	1/2	F.E. 400 terms	$\begin{aligned} & 19 \cdot 95 \\ & 19 \cdot 72 \end{aligned}$	$\begin{aligned} & 42 \cdot 57 \\ & 42 \cdot 47 \end{aligned}$	$\begin{aligned} & 51 \cdot 28 \\ & 51 \cdot 59 \end{aligned}$	$\begin{aligned} & 78.97 \\ & 77.79 \end{aligned}$	79.41
$0 \cdot 15$	1/2	1/2	F.E. 400 terms	$\begin{aligned} & 20 \cdot 09 \\ & 20 \cdot 55 \end{aligned}$	$\begin{aligned} & 43 \cdot 04 \\ & 42 \cdot 80 \end{aligned}$	$\begin{aligned} & 50 \cdot 24 \\ & 47 \cdot 27 \end{aligned}$	$\begin{aligned} & 77 \cdot 14 \\ & 77 \cdot 22 \end{aligned}$	$80 \cdot 39$
	1/4	$1 / 4$	F.E. 400 terms	$\begin{aligned} & 19 \cdot 51 \\ & 19 \cdot 48 \end{aligned}$	$\begin{aligned} & 43 \cdot 33 \\ & 43 \cdot 14 \end{aligned}$	$\begin{aligned} & 51 \cdot 57 \\ & 51.63 \end{aligned}$	$\begin{aligned} & 77 \cdot 18 \\ & 77 \cdot 13 \end{aligned}$	$86 \cdot 95$
	1/4	1/2	F.E. 400 terms	$\begin{aligned} & 20 \cdot 05 \\ & 18 \cdot 71 \end{aligned}$	$\begin{aligned} & 41 \cdot 54 \\ & 41 \cdot 88 \end{aligned}$	$\begin{aligned} & 53 \cdot 05 \\ & 52 \cdot 85 \end{aligned}$	77.47	79.06
$0 \cdot 20$	1/2	1/2	F.E. 400 terms	$\begin{aligned} & 20 \cdot 79 \\ & 20 \cdot 72 \end{aligned}$	$\begin{aligned} & 42 \cdot 16 \\ & 41.57 \end{aligned}$	$\begin{aligned} & 48 \cdot 18 \\ & 43 \cdot 25 \end{aligned}$	$\begin{aligned} & 75 \cdot 13 \\ & 73 \cdot 75 \end{aligned}$	81.79
	1/4	$1 / 4$	F.E. 400 terms	$\begin{aligned} & 19 \cdot 20 \\ & 19 \cdot 31 \end{aligned}$	$\begin{aligned} & 42 \cdot 67 \\ & 42 \cdot 22 \end{aligned}$	$\begin{aligned} & 52 \cdot 50 \\ & 53 \cdot 13 \end{aligned}$	$\begin{aligned} & 76 \cdot 26 \\ & 75 \cdot 86 \end{aligned}$	$90 \cdot 56$
	1/4	1/2	F.E. 400 terms	$\begin{aligned} & 20 \cdot 25 \\ & 19 \cdot 53 \end{aligned}$	$\begin{aligned} & 40 \cdot 50 \\ & 39 \cdot 72 \end{aligned}$	$\begin{aligned} & 55 \cdot 87 \\ & 53 \cdot 34 \end{aligned}$	$\begin{aligned} & 76 \cdot 40 \\ & 73 \cdot 68 \end{aligned}$	$79 \cdot 17$
	1/2	1/2	F.E. 400 terms	$\begin{aligned} & 22 \cdot 35 \\ & 22 \cdot 26 \end{aligned}$	$\begin{aligned} & 41 \cdot 41 \\ & 38 \cdot 96 \end{aligned}$	$\begin{aligned} & 46 \cdot 09 \\ & 49 \cdot 65 \end{aligned}$	$\begin{aligned} & 73 \cdot 34 \\ & 73 \cdot 12 \end{aligned}$	$81 \cdot 94$

Table 3

Frequency coefficients $\Omega_{i}(i=1,2,3, \ldots, 5)$ determined in the case of a simply supported rectangular orthotropic plate $\left(D_{2} / D_{1}=D_{k} / D_{1}=0.5 ; v_{2}=0.3\right)$ with a circular hole with a free edge $(b / a=3 / 2)$

r / a	\bar{x} / a	\bar{y} / b	Method	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}	Ω_{5}
$0 \cdot 10$	1/4	1/4	Analytical and F.E.	$14 \cdot 82$	26.49	$43 \cdot 48$	44.93	$59 \cdot 28$
			F.E.	14.69	26.50	$43 \cdot 15$	44.71	$59 \cdot 80$
			20 terms	14.69	26.49	$43 \cdot 24$	44.73	
	1/4	1/2	F.E.	14.73	26.09	$43 \cdot 40$	44.62	58.91
			20 terms	14.71	$26 \cdot 12$	$43 \cdot 39$	$44 \cdot 52$	
	1/2	1/2	F.E.	14.72	$26 \cdot 40$	$43 \cdot 85$	$44 \cdot 41$	$58 \cdot 12$
			20 terms	14.68	$26 \cdot 42$	43.75	$44 \cdot 36$	
$0 \cdot 15$	1/4	1/4	F.E.	14.55	$26 \cdot 60$	42.55	$45 \cdot 12$	$61 \cdot 62$
			20 terms	14.54	$26 \cdot 58$	42.53	$45 \cdot 16$	
	1/4	1/2	F.E.	14.69	25.60	42.91	$45 \cdot 95$	57.97
			20 terms	14.56	25.41	42.69	$45 \cdot 57$	
	1/2	1/2	F.E.	14.87	26.09	42.83	45.22	57.01
			20 terms	14.67	25.75	41.86	$44 \cdot 87$	
$0 \cdot 20$	1/4	1/4	F.E.	14.38	26.73	41.63	$45 \cdot 82$	63.95
			20 terms	14.33	26.61	41.62	$45 \cdot 84$	
	1/4	1/2	F.E.	14.70	24.93	41.97	$48 \cdot 51$	$56 \cdot 62$
			20 terms	14.55	$25 \cdot 00$	41.52	48.45	
	1/2	1/2	F.E.	15.33	25.61	41.09	$47 \cdot 47$	55.99
			20 terms	$16 \cdot 13$	25.92	$38 \cdot 88$	49.58	
			30 terms	$15 \cdot 14$	$24 \cdot 80$	$39 \cdot 34$	$47 \cdot 42$	

The analytical determinations were performed making $N=M=20$. Accordingly a (400×400) secular determinant was generated. Numerical experiments were performed

Figure 2. Modelling of the orthotropic plate in the neighborhood of the orifice, using square elements ($a / b=1$, $r / a=0 \cdot 1)$.
taking $N=M=10$ and a good rate of convergence was observed when increasing N and M, up to $N=M=20$.
On the other hand, numerical instabilities were observed, in general, when the frequency determinant was enlarged to 900×900; see, for instance, Table $1, r / a=0 \cdot 10, \bar{x} / a=1 / 4$, $\bar{y} / b=1 / 2$ and $\bar{x} / a=1 / 2=\bar{y} / b$ and Table 3, $r / a=0 \cdot 20, \bar{x} / a=1 / 2=\bar{y} / b$. On the other hand, the agreement between analytical and finite element predictions is very good from a practical viewpoint.

From a dynamic stiffening viewpiont, one observes an appreciable increment in the fundamental frequency, with respect to the solid plate, for $r / a=0.2$ and $\bar{x} / a=1 / 2=\bar{y} / b$ in the case of Table $1(b / a=2 / 3)$ and for $b / a=1$ (Table 2), where increments of the order of 20% and 10%, respectively, are observed.

ACKNOWLEDGMENTS

The present study has been sponsored by Secretaria General de Ciencia y Tecnología of Universidad Nacional del Sur and by Comisión de Investigaciones Científicas (Buenos Aires Province).

REFERENCES

1. H. Abdalla and J. B. Kennedy 1995 Journal of Structural Engineering 121, 1058-1068. Dynamic analysis of prestressed concrete beams with openings.
2. P. A. A. Laura, E. Romanelli and R. E. Rossi 1997 Journal of Sound and Vibration 202, 275-283. Transverse vibrations of simply supported rectangular plates with rectangular cutouts.
3. D. R. Avalos, H. A. Larrondo, P. A. A. Laura and R. E. Rossi 1997 Journal of Sound and Vibration 202, 585-592. Transverse vibrations of simply supported rectangular plates with rectangular cutouts carrying an elastically mounted concreted mass.
4. Algor Professional Mech/E 1992 Linear Stresses and Vibration Analysis Processor Reference Manual, Part No. 6000.401, Revision 2. Pittsburgh, Pennsylvania.
5. S. G. Lekhnitskii 1968 Anisotropic Plates. New York: Gordon and Breach.
